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SUMMARY 

Numerical solutions using the SIMPLE algorithms for laminar flow over a backward-facing step are presented. 
Five differencing schemes were used: hybrid; quadratic upwind (QUICK); second-order upwind (SOUD); central- 
differencing and a novel scheme named second-order upwind biased (SOUBD). The SOUBD scheme is shown to 
be part of a family of schemes which include the central-differencing, SOUD and QUICK schemes for uniform 
grids. The results of the backward-facing step problem are presented and are compared with other numerical 
solutions and experimental data to evaluate the accuracy of the differencing schemes, The accuracy of the 
differencing schemes was ascertained by using uniform grids of various grid densities. The QUICK, SOUBD and 
SOUD schemes gave very similar accurate results. The hybrid scheme suffered from excessive diffusion except for 
the finest grids and the central-differencing scheme only converged for the finest grids. 
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INTRODUCTION 

The backward-facing step is one of the most fundamental geometries where laminar separation 
occurs caused by the sudden change in the geometry. The present study has investigated a classical 
planar, laminar backward-facing step flow originally studied by Armaly et al. The geometry of the 
problem is shown in Figure 1. The expansion ratio of the inlet channel height, h, to the outlet height is 
1:2. The upper boundary layer simplifies computational boundary conditions making the problem 
readily applicable to numerical procedures. At low Reynolds numbers the flow behaves like an open 
backward-facing step flow where the flow separates at the step and reattaches further downstream. The 
reattachment length increases almost linearly with Reynolds number, the slight non-linear trend is 
caused by the viscous drag along the upper boundary. For higher Reynolds numbers the adverse 
pressure gradient is strong enough to cause separation along the upper boundary which reattaches 
further downstream. The upper recirculation region causes the growth of the lower reattachment to be 
decreased even further this behavior has numerically investigated by Barton.2 Armaly et al.' 
experimentally investigated the problem and also carried out a numerical study, which failed to obtain 
good agreement with the experimental data because of the inadequate grid resolution. Kim and Moin3 
conducted one of the first numerical studies which gave good agreement with the experimental data of 
Armaly et al. up to Re = 500, where the Reynolds number is defined using 2h as the length scale and 
the mean u-velocity at the step as the velocity term. The disagreement between the numerical and 
experimental results for higher Reynolds numbers is probably caused by the three-dimensional 
experimental effects. Caruso et aL4 used grid adaption in an attempt to improve numerical results. 
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30H -1 
Figure 1. The backward-facing step geometry and recirculation regions for a high Reynolds flow 

They found little difference with the predictions of Kim and Moin3 which used a uniform 101 x 101 
grid. Indeed, subsequent numerical s t u d i e ~ ~ - ~  gave very similar predictions with the exception of 
Orlandi," who found that using a non-uniform grid introduced a strong numerical diffusion effect due 
to low-order truncation errors. 

The present study concentrates on a detailed grid dependency investigation using a variety of 
differencing schemes. The study mainly uses various uniform computational grids, which is not 
desirable in terms of computational cost but does have two advantages. First, the work is easily 
reproducible and second, truncation errors associated with non-uniform grids are avoided. 

THE GOVERNING EQUATIONS 

The governing equations for planar, incompressible, laminar flow are 

aPu aPY -+--0, 
ax ay 

a2v a2v - + - = - - + p  - + - .  apuv apv2 
ay ax ay (ax2 w) (3) 

The variables are non-dimensionalized using the height of the inlet channel, h, the mean velocity u,, 
and the pressure coefficient $ puk. The Reynolds number is defined by Re = 2phum/p, where p is the 
density and p is the viscosity of the flow. 

THE BOUNDARY CONDITIONS 

Similar to other numerical studies, a fully developed parabola u-velocity profile is prescribed at the 
inlet. The outlet is a total length of 30 h downstream of the step. The horizontal length of 30 h is 
sufficiently long enough not to effect the upstream recirculation regions. The outlet boundary 
conditions assume the outlet diffusion terms are zero. The outlet condition is doubtful although it has 
been applied to similar studies. No-slip boundary conditions are applied for the wall boundaries. 
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DISCRETIZATION AND THE COMPUTATIONAL GRID SYSTEM 

The governing equations are solved in primitive form (u, v, p ) ,  the solution procedure is discussed 
later. The partial differential equations are discretized on to a staggered computational grid system.' ' 
The velocities are located on the faces of the cell and the pressure term is located at the centroid of the 
control volume. Staggering the primitive terms (u, v, p )  allows the continuity equation to be integrated 
over a single control volume and prevents odd-even coupling.'2 A single control volume with adjacent 
east and west control volumes are shown in Figure 2. 

The diffusion terms can be successfully discretized using central-differencing because it is third- 
order accurate and diffusion dominated solutions have slow spatial variation. The discretization of the 
convection terms are not as straight-forward, which is shown by integrating a convection term across a 
control volume (in one dimension): 

because the terms 4e and bW have to be interpolated, using a differencing scheme. The present study 
uses the following schemes central-difference, quadratic upwind interpolation for convection kinetics 
(QUICK), second-order upwind bias difference (SOUBD), second-order upwind difference (SOUD) 
and the hybrid scheme. The former schemes were chosen because they form a family of schemes for 
uniform grids, this is discussed later. The interpolation assumptions for the various schemes are 
summarized below for the 4e term. 

(i) The central difference scheme: 

Central differencing is second-order accurate but it tends to fail giving a spatial oscillatory solution for 
the no-source convection-diffusion equation with fixed boundaries when the grid Peclet number, PeG, 
is greater than two.l3 

In practice, non-oscillatory solutions can be predicted for values of PeG greater than two, away from 
fixed boundaries conditions, for example away from wall boundaries. Nevertheless, the central- 
differencing scheme is unstable, unlike 'upwind' schemes. 

I 
@ velocity node 

scalar node 

Figure 2. The grid notation for a pole-cell and its adjacent east and west cells 
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(ii) Quadratic upstream interpolation for convection kinematics (QUICK): 
if PeG 2 0, 

4, = i ( 4 E  + $P) - i ( 4 E  - 2 4 P  + 4W); 

4 e  = i ( 4 E  + = 4 ( 4 E E  - W E  + 4p) .  

(7) 

(8) 

if PeG < 0, 

The QUICK scheme14 uses a quadratic fit through the two adjacent nodes and a third upwind node to 
find the interpolated value. The upwind term gives the scheme greater stability than central- 
differencing. The scheme has been extensively used in technical studies. The QUICK scheme can 
converge faster for low Peclet numbers compared with the hybrid scheme but it becomes unstable for 
high Peclet numbers unless the coefficients are revised in some form. Patel and Markatos” used the 
recommended revision of Pollard and Siu16 and found the revision reduced the rate of convergence but 
increased the stability of the scheme. 

if PeG 2 0, 
(iii) Second-order upwind biased difference scheme (SOUBD): 

4 e  = 4 P  + a ( &  - 4 w ) ;  (9) 

4 e  = 4 E  - (4EE - 4 P ) .  (10) 

if PeG < 0, 

The scheme uses the adjacent upwind node and extrapolates to the cell face value similar to the SOUD 
scheme; unlike the SOUD scheme the gradient is calculated by central-differencing. The SOUBD 
scheme therefore has greater accuracy than the SOUD scheme, as the third-order truncation error is 
smaller. The improved accuracy however has the almost inevitable consequence of making the scheme 
less stable and prone to predict spatial oscillatory solutions. 

(iv) Second-order upwind difference scheme (SOUD): 
if PeG ? 0, 

4 e  = 4 E  - ( 4 E E  - ( 1 2 )  
The SOUD scheme” uses only upwind terms to extrapolate the cell face value and therefore the 
scheme has excellent stability quantities. In comparison with QUICK, ShyyI8 and Sharif and 
Busnaina” concluded that SOUD is the superior scheme for large grid Peclet numbers where the 
QUICK scheme tends to predict spatially oscillatory solutions. 

There exists a generalized relationship between the QUICK, SOUD and the central differencing 
schemes for uniform grids.20 Considering the flow westward, these schemes can be expressed in 
general terms as 

ue = i(uE + UP) - iq(UEE + UP - 2uE), ( 1 3 )  
where the parameter q is set to zero to give central differencing, q = 1 1 4  to give QUICK differencing, 
q = 1 to give SOUD differencing. It is straightforward to show that the SOUBD scheme corresponds to 
the parameter q = 1 / 2 .  

if PeG > 2, 
(v) The hybrid difference scheme: 

4 e  = 4 ~ ;  ( 1 4 )  
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The hybrid differencing scheme2’ has the accurate features of central differencing for low PeG numbers 
and switches to the first-order accurate upwind differencing for PeG numbers with an absolute value of 
two or greater. The scheme also ignores the physical viscosity when applying the upwind interpolation. 
This is a reasonable assumption as the truncation error caused by first-order upwind differencing is 
likely to be at least the same order of magnitude. The hybrid scheme is stable and robust and has been 
used extensively in engineering applications. 

When the finite-difference approximations are applied to the partial differential equations, they can 
be expressed as algebraic equations, in the following form: 

A P ~ P  = A N &  +AE& + A s &  +Aw& +SA +SB, (17) 

where the source term, SA, contains extra coefficient terms required for schemes such as QUICK, S, 
relates to the physical source terms such as the pressure gradient in the case of the momentum 
equations. 

The formulation of the coefficient terms has been discussed elsewhere.” The formulation of revised 
coefficients terms for the central-differencing scheme in one-dimension is briefly discussed to 
demonstrate the concepts behind Pollard and Siu’s revised formulation of the QUICK scheme.16 
Pollard and Siu’s revision includes the following conditions: the A coefficients must never become 
negative; the solution of convection dominated flows should be essentially stable. The derivation is 
simplified with the definition of the following convection and diffusion terms 

C i  = P U ~ ,  0, = Ti/LLr. (18) 

The following coefficients meet the above requirements for central-differencing (in one dimension): 

A P  = AE + A W .  

If we ignore the source term SA it is clear that the above coefficients lead to a physically realistic 
solution if the convection terms dominate, normal coefficient terms with low diffusion terms would 
lead to unstable solutions.” Additional terms are required to make the above algebraic equation 
physically correct these terms are contained in the source term, SA, and are explicitly treated to prevent 
divergence in the matrix solution procedure 

(21) 

S A  = -hf:Ce@E + h f G c w @ W  - h f L c e @ p  + hf:cw@p, (22) 
where the hf coefficients are 

The revision can also be applied to the SOUD and SOUBD schemes. The individual sets of 
coefficients for central-differencing, QUICK, SOUBD and SOUD are presented in a revised 
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s; = fq(M,+Ce +M,+Cn - M,CW - M,-C,)@p 
(29) + ( 1  + iq)(M,+Cs + M:Cw - MLCe - M;Cn)@p. 

In conclusion, the above equations have combined the generalized formulation2' with the coefficient 
revision of Pollard and Siu.I6 Clearly, the main advantage of this approach is it simplifies computer 
coding. The coefficient terms for the hybrid differencing scheme are discussed in Patankar.I2 

THE UNIFORM GRIDS 

The present study uses the following uniform grids: a very coarse grid (15 x 8); two coarse grids 
(30 x 16) and (40 x 20): two medium grids (80 x 40) and (120 x 50); two fine grids (160 x 80) and 
(200 x 100); and a very fine grid (250 x 128). The terms coarse, medium and fine have been used in 
the preceding sections as well as the grid labelling of 1 to 8 (grid (1) is the very coarse grid). The very 
fine grid was only used for the hybrid scheme due to time limitations and because the coarser grids are 
satisfactory for other differencing schemes. 

THE SOLUTION PROCEDURE 

The semi-implicit method for pressure linked equations (SIMPLE) methodology is used to solve the 
governing equations.'2,20,22 The algorithm is briefly described. The Navier-Stokes equations are 
solved using the current pressure field (which is initially guessed). The continuity equation is 
expressed in the form of a pressure correction equation and the velocity and pressure fields are then 
corrected to satisfy continuity equation. The whole procedure is then repeated until the velocity and 
pressure fields converge. 

The SIMPLE methodology uses a pseudo-time step term non-dimensionalized by pAxAyJA,. 
Raithby and Schneide?' studied a variety of problems and concluded a time step parameter of about 
four is optimal. Lower time step values lead to slower converging solutions but improves stability. The 
central-differencing scheme fails to converge for the coarser grids even if the time step parameter is set 
to extremely low values. The other schemes converge for time step parameters ranging from 0.3 to 4 
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where the QUICK scheme converges slowly compared with SOUD, and the hybrid scheme converges 
the most rapidly. The velocity under-relaxation parameters were set to c1,,,=0.7. The pressure 
correction under-relaxation parameter was calculated from the following relationship:' where E is the 
time step parameter 

The solution was assumed to have converged when the maximum absolute relative change between 
successive iterations was less than for all velocity and the pressure values and when the fluid 
residuals have decreased to 

The algebraic equations are solved by using a tri-diagonal matrix solution procedure (TDMA). The 
TDMA procedure is applied in the y-co-ordinate direction and successively sweeps through the 
computational domain in the x-direction, (the streamwise direction). 

of their original value. 

THE RESULTS 

The changes in reattachment and separation positions from a coarse to fine grid tend to increase with 
Reynolds number. The hybrid scheme has the highest percentage changes in reattachment and 
separation positions. This is shown in Table I, which shows the percentage change in the reattachment 
lengths x1 for the various schemes from medium to fine grids. The hybrid scheme tends to fail to give 
reliable results for Reynolds numbers of Re = 500 and above. The central differencing scheme fails to 
converge for Re = 500 and above using medium grids so no relative change can be considered. Clearly, 
for Re = 500 and above, a central differencing approach is unstable and the hybrid scheme switches to 
first-order upwind differencing which proves to be inaccurate. All the other schemes have low 
percentage changes across the entire range of Reynolds numbers. The values of the reattachment and 
separation lengths xl, x2 and x3 are determined by interpolation using velocity data at the spatial 
locations near the reattachment or separation regions. 

Estimated grid independent reattachment and separation lengths are calculated by fitting a straight 
line through the top three or four finest grid results against their average x-co-ordinate mesh Peclet 
number. The intercept is taken to be the independent result. The estimated grid independent results 
using the QUICK, SOUBD and SOUD schemes are virtually the same. The estimated grid independent 
results are used to make comparisons with previous sets of results. A low Reynolds number case, 
Re = 300, is considered in Table 11, the table gives the percentage difference from the estimated 
independent results and the results for the various grids. Table I1 demonstrates how similar the results 
are for the QUICK, SOUBD and SOUD schemes, all these schemes give acceptable results for grids 
(4) to (8). The hybrid scheme gives more disappointing results requiring grid (8) to give similar 
agreement compared with QUICK, SOUBD and SOUD. The central differencing scheme requires a 

Table 1. Percentage change in lower reattachment length for various schemes 
from medium to fine grids 

Re hybrid central QUICK SOUBD SOUD 

50 0.6 0.9 0.1 0.4 0.9 
I00 1 .o 0.4 0.2 0.8 1.1 
200 0.7 0.4 0.4 0.6 1 .o 
300 0.7 0.4 0.2 0.4 0.5 
400 1 .O 0.6 0.1 0.1 0.2 
500 3.1 0.1 0.4 1 .o 
600 8 .o 0.3 0.7 0.9 

- 

- 
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Table 11. The lower reattachment length xl for various grids and (the percentage difference from 
the estimated grid independent result) for Re = 300 

grid hybrid central QUICK SOUBD SOUD 

7.99 (1 1.9) - 7.74 (8.4) 7-68 (7.6) 7.61 (6.6) 
7.46 (4.5) 7.36 (3.0) 7.40 (3.7) 7.44 (4.2) 
7.25 (2.0) - 7.29 (2.1) 7.32 (2.5) 7.34 (2.7) 
6.97 (2.5) - 7.15 (0.2) 7.18 (0.5) 7.21 (1.0) 
7.00 (2.0) 7.11 (0.5) 7.15 (0.1) 7.16 (0.3) 7.17 (0.5) 
7.02 (1.7) 7.05 (1.6) 7.13 (0.3) 7.15 (0.1) 7.16 (0.1) 
7.05 (1.3) 7.14 (0.1) 7.15 (0.1) 7.16 (0.2) 7.17 (0.4) 
7.08 (0.9) 

- 

grid at least as fine as grid ( 5 )  to converge. The grid dependency behaviour of the lower reattachment 
length x1 is also investigated in Table 11. The QUICK, SOUBD and SOUD schemes predict almost 
parallel results with QUICK predicting the smallest value of XI. Also, these three schemes predict a 
large reattachment length for coarse grids converging to a smaller value with grid refinement. The 
SOUD scheme tends to predict a slightly larger lower reattachment length because of an ‘upwind 
effect’. The position of the maximum u-velocity is slighly higher compared with the QUICK scheme 
result, this prevents early reattachment. The hybrid scheme tends to predict a large lower reattachment 
length for coarse grids where the scheme is dominated by numerical diffusion. Initially, the effect of 
switching to central-differencing causes the lower reattachment length to decrease but the length tends 
to increase in size as central-differencing becomes more appropriate. 

A higher Reynolds number case, Re = 600, has an upper recirculation region. The percentage 
difference between the reattachment and separation length results from their estimated grid 
independent results are presented in Table 111. The most difficult feature to resolve was the separation 
position x2, this is because the upper recirculation region is very sensitive, interacting with the lower 
reattachment length. In Table I11 all the schemes perform worst for the lower reattachment position 
compared with the low Reynolds number results. The QUICK, SOUD and SOUBD schemes give 
acceptable results for all the reattachment and separation lengths for the grids ( 5 )  to (8), the QUICK 
scheme seems to give slightly better agreement than the other schemes. The hybrid scheme fails to give 
any acceptable results with fairly large percentage differences for even the finest grid. The central- 
differencing scheme gives good agreement for grid (7), the results are poor for grid (6), convergence 
cannot be obtained for the coarser grids. In Table I11 the grid dependency behavior for the reattachment 
and separation lengths is also investigated. The high Reynolds case, similar to the low Reynolds case, 
predicts almost parallel results for the QUICK, SOUBD and SOUD schemes. However, the lower 
reattachment length increases in size with grid refinement, whereas for the low Reynolds number case 
it decreases. The increase in the lower reattachment length XI, is caused by the upper recirculation 
region. The coarse grids tend to predict a large upper recirculation region causing early reattachment 
for the lower boundary. The SOUD scheme tends to be most affected, predicting the largest upper 
recirculation regions and thus the smallest lower reattachment lengths. 

The estimated grid reattachment and separation lengths are summarized on Figure 3 as well as the 
experimental data of Armaly et al. The present numerical predictions agree satisfactorily with the 
experimental results up to Re = 500, Armaly et ai. observed three dimensional effects occurred for 
higher Reynolds numbers which probably explains the deviation. On the same figure the predictions of 
Guj and Stella7 are shown, other predictions give similar results. The present predictions have slightly 
larger x1 and x3 values for the higher Reynolds numbers compared with Guj and Stella7, this suggests 
that the present results are more accurate as these lengths tend to increase with grid refinement. 
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Table III(a). The lower reattachment length x1 for various grids and (the percentage difference from 
the estimated grid independent result) for Re = 600 

66 1 

grid hybrid central QUICK 

14.28 (33.1) 
11.88 (10.7) 
9.24 (16.2) 
8.98 (19.6) 
9.58 (12.1) 
9.41 (8.0) 

10.10 (6.3) 
10.32 (4.0) 

__ 
10.51 (1.8) 
10.72 (0.2) 

8.46 (26.8) 
10.08 (6.5) 
10.41 (2.8) 
10.57 (1.2) 
10.66 (0.4) 
10.63 (0.6) 
10.67 (0.3) 

SOUBD 

8.52 (26.0) 
9.64 (1 1.4) 

10.12 (6-0) 
10.60 (1 .O) 
10.63 (0.7) 
10.72 (0.2) 
10.65 (0.5) 

SOUD 

8.77 (22.4) 
9.11 (17.8) 
9.71 (10.5) 

10.54 (1.5) 
10.57 (1.2) 
10.69 (0.2) 
10.61 (0.8) 

Table HI@). The separation length x2 for various grids and (the percentage difference from the 
estimated grid independent result) for Re = 600 

~ 

grid hybrid central QUICK SOUBD SOUD 
- __ 4.19 (52.7) 5.60 (35.7) 7.54 (15.5) 
9.60 (10.2) __ 7.65 (13.8) 7.42 (17.4) 6.84 (21.4) 
6.74 (29.2) __ 8.17 (6.5) 7.94 (9.7) 7.48 (14.0) 
6.93 (25.7) __ 8.42 (3.3) 8.31 (4.5) 8.09 (6.5) 
7.50 (16.1) __ 8.59 (1.4) 8.55 (1.8) 8.49 (2.5) 
7.83 (11.2) 8.52 (2.2) 8.57 (1.3) 8.62 (1.0) 8.62 (1.6) 
8.03 (8.4) 8.72 (0.1) 8.63 (0.8) 8.61 (1.0) 8.57 (1.0) 
8.26 (5.4) 

Table III(c). The reattachment length x3 for various grids and (the percentage difference from the 
estimated grid independent result) for Re = 600 

grid hybrid central QUICK SOUBD SOUD 

1 - - 11.21 (31.0) 12.68 (21.9) 12.56 (22.7) 
10.67 (34.3) - 15.86 (2.2) 15.77 (3.0) 15.76 (3.1) 2 

3 11.49 (29.3) -- 16.11 (0.8) 16.15 (0.6) 16.17 (0.4) 
4 13.49 (16.9) - 16.15 (0.6) 16.18 (0.4) 16-25 (0.1) 
5 14.59 (1 1.3) - 16.17 (0.4) 16.22 (0.1) 16-29 (0.3) 
6 15.11 (7.5) 15.85 (2.5) 16.17 (0.4) 16.18 (0.4) 16.24 (0.03) 
7 15.39 (5 .5 )  16.15 (0.6) 16.21 (0.2) 16.24(0.02) 16.28 (0.2) 
8 5.65 (3.8) 

However, the differences could also be caused by slight differences in geometry and inlet conditions. 
The u-velocity profiles for the QUICK, SOUBD and SOUD schemes are virtually identical for 

coarse, medium and fine grids for the entire Reynolds number range. The hybrid scheme however does 
not produce identical profiles. In the case of Re = 100, the coarse grid results have a large u-velocity at 
x = 3h near the top boundary, compared with the medium and fine grids. For Re = 300 the hybrid 
scheme again predicts a larger u-velocity near the top boundary at x = 6h to x = 12h for the coarse 
grids in comparison with the medium and fine grid results. In the Re = 500 case, the coarse grid results 
have a larger u-velocity near the top boundary at x = 9h to x = 15h in comparison with the medium and 
fine grid results. 

The grid dependency of the pressure field is considered using the maximum pressure relative to the 
step corner, non-dimensionalized using the mean inlet u-velocity and inlet density. For low Reynolds 
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Figure 3.  The variation of reattachment and separation lengths with Reynolds number 

number flows the maximum pressure occurs on the lower boundary, downstream of the lower 
reattachment point. However, for high Reynolds numbers where an upper recirculation region occurs 
the location of the maximum pressure is downstream of the upper reattachment length on the upper 
boundary. The medium grids are sufficient for the QUICK, SOUBD and SOUD schemes to obtain 
values that are very similar in value. The hybrid scheme requires fine grids especially for the higher 
Reynolds number flows. This is demonstrated in Table IV which shows the maximum pressure 
coefficient for various grids for the Re = 500 case. 

Finally, the numerical benchmark established at the Minisymposium on Outflow Boundary 
Conditions (MOBC) held at the University College of Swansea, U.K. in July 1989 is considered. The 
benchmark uses the present problem with a Reynolds number of Re = 800. The Re = 800 result has 
even longer reattachment and separation lengths which are probably sufficiently long to be seriously 
effected by the rather limited main channel length of 30 step-heights. Nevertheless, the various 
schemes are applied to grid 7 (200 x 100) as a comparison exercise with the MOBC benchmark. The 
hybrid scheme was the only scheme that successhlly converged using grid 7, the results are shown in 
Table V The source of instability was found to be the lack of grid refinement along the upper and 
lower solid boundaries. The results using a refined grid near the upper and lower boundaries are shown 

Table IV The maximum pressure coefficient for various grids Re = 500 

grid hybrid central 
0.378 - 
0.462 - 
0.480 - 
0-499 - 
0.491 - 
0.486 0.468 
0-483 0.474 
0.480 

QUICK 

0.428 
0.468 
0.470 
0.475 
0.475 
0.474 
0.475 

SOUBD 

0.45 1 
0.468 
0.470 
0.476 
0.476 
0.475 
0.476 

SOUD 

0.430 
0.468 
0.470 
0,475 
0.475 
0.475 
0.476 
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Table V Reattachment and separation lengths for Re = 800 

S o h  (xmm = 30) 
Bets & Sayma (xmm = 14) 
Betts & Sayma (xma = 30) 
Srinivasan & Rubin (xmm = 14) 
Srinivasan & Rubin (xma = 30) 
Srinivasan & Rubin (xma = 60) 
Gartling (coarse) (xmm = 60) 
Gartling (fine) (xmm = 60) 

Present results (xmm = 30) 
hybrid (uniform) 
hybrid (refined grid) 
QUICK 
SOUBD 
SOUD 

11.50 9.40 
11.1&11.18 8.56-8.58 

11.21 8.40 
12.30 10.18 
12.44 10.25 
12.44 10.18 
1 1.62 9.58 
12.20 9.70 

10.82 8.45 
10.99 8.55 
12.20 9.64 
12.17 9.61 
12.09 9.54 

x3 

18.80 

20.86 
- 

- 
20.44 
20.50 
20.96 
20.96 

18.91 
19.55 
22.01 
22.07 
22.21 

on Table V for the various schemes. The refined grid also uses 200 x 100 grid points (uniform in the x 
co-ordinate) the smallest cell height is Ay = 5 x 1 0-3 (non-dimensionalised with step-height) linearly 
increasing to cell heights of Ay = 3.5 x The differences between the hybrid scheme results using 
a refined or uniform grid are quite small. The central-differencing scheme failed to converge 
successfully even for the refined grid. The table also shows some other available results, this list is far 
from exhaustive but it gives a fair impression how the recirculation regions behave with various 
numerical approaches. Generally, nl, grows in size with grid refinement. This can be concluded from 
the various results which use a relatively coarse grid Sohn', Betts and S a y n ~ a ~ ~  and Gartlhg24 (coarse 
grid). The MOBC benchmark was developed to test a variety of outlet boundary conditions. Clearly, 
the boundary conditions discussed in Sani and GreshoZ3 are very effective and various channel lengths, 
x,,, give very similar results even if the outlet boundary condition intersects a recirculation region 
(xm, = 14). The outlet boundary condition used in the present study fails if the outlet boundary is near 
the upper reattachment, x3, refer to Sani and G r e ~ h o ~ ~  for further details. The Gartling (fine grid) 
results and the Srinivasan and R ~ b i n ~ ~  results are probably the most reliable results as a benchmark 
result. The biggest discrepancy between these two sets of results is the upper separation length x2, 
which was also found to be very difficult to resolve in the present study with grid refinement. The 
results used for comparison are an average of these two sets of results; x1 M 12.3, x2 x 9.9 and 
x3 x 20-7. The hybrid scheme appears to under-predict all the reattachment and separation lengths by 
about one step-height. The QUICK, SOUBD and SOUD schemes, however, give reasonable agreement 
with the Gartling and the Srinivasan and Rubin results for the reattachment length x1 and separation 
length x2, the QUICK scheme has the best agreement. However, these schemes appear to give poor 
agreement for the upper reattachment length x3 which is about one step-height further downstream. 
The present predictions are most likely in error caused by the simple outlet condition used which tends 
to reduce the v-velocities near the outlet. 

CONCLUDING REMARKS 

It would appear that almost any differencing-scheme applied to medium or fine grids produce results 
similar to the anticipated grid-independent results for the majority of cases. In the case of high 
Reynolds number flows the hybrid scheme fails to give reliable results for medium grids and the 
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central differencing scheme will only converge for fine grids. The accuracy achieved by the central- 
differencing scheme (if it converges), QUICK, SOUBD and SOUD schemes is virtually identical for 
the problem studied. Other numerical studies of the QUICK scheme and the SOUD scheme tend to 
favour the latter scheme but in the present study there is relatively large physical viscosity as well as 
pressure gradient terms acting as source terms and the behavior of the QUICK, SOUBD and SOUD 
schemes is very similar. It is not possible to conclude which is the most accurate but they all perform 
remarkably better than the hybrid scheme. The SOUD scheme can use higher time step parameters 
compared with QUICK and SOUBD schemes confirming its general robustness. 

When uniform grids are considered then central-differencing, QUICK, SOUBD and SOUD schemes 
can be described by a general formulation using a single parameter to obtain the various schemes. The 
coefficients in the formulation can be revised in such a way to avoid negative coefficients or 
coefficients that tend to zero, either of which will tend to produce divergence in the matrix solution 
procedure. 
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